Longitudinal Multiple Sclerosis Lesion Segmentation Using 3d Convolutional Neural Networks
نویسندگان
چکیده
We present our entry for the Longitudinal Multiple Sclerosis Challenge 2015 using 3D convolutional neural networks (CNN). We model a voxel-wise classifier using multi-channel 3D patches of MRI volumes as input. For each ground truth, a CNN is trained and the final segmentation is obtained by combining the probability outputs of these CNNs. Efficient training is achieved by using sub-sampling methods and sparse convolutions. We obtain accurate results with dice scores comparable to the inter-rater variability.
منابع مشابه
A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملTversky as a Loss Function for Highly Unbalanced Image Segmentation using 3D Fully Convolutional Deep Networks
Fully convolutional deep neural networks have been asserted to be fast and precise frameworks with great potential in image segmentation. One of the major challenges in utilizing such networks is data imbalance, which is especially restraining in medical imaging applications such as lesion segmentation where lesion class voxels are often much less than non-lesion voxels. A trained network with ...
متن کاملImproving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach
In this paper, we present a novel automated method for White Matter (WM) lesion segmentation of Multiple Sclerosis (MS) patient images. Our approach is based on a cascade of two 3D patch-wise convolutional neural networks (CNN). The first network is trained to be more sensitive revealing possible candidate lesion voxels while the second network is trained to reduce the number of misclassified v...
متن کاملTversky Loss Function for Image Segmentation Using 3D Fully Convolutional Deep Networks
Fully convolutional deep neural networks carry out excellent potential for fast and accurate image segmentation. One of the main challenges in training these networks is data imbalance, which is particularly problematic in medical imaging applications such as lesion segmentation where the number of lesion voxels is often much lower than the number of non-lesion voxels. Training with unbalanced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015